A powerful YOLO (You Only Look Once) computer vision service that integrates with Claude AI through Model Context Protocol (MCP). This service enables Claude to perform object detection, segmentation, classification, and real-time camera analysis using state-of-the-art YOLO models.
Features
- Object detection, segmentation, classification, and pose estimation
- Real-time camera integration for live object detection
- Support for model training, validation, and export
- Comprehensive image analysis combining multiple models
- Support for both file paths and base64-encoded images
- Seamless integration with Claude AI
Setup Instructions
Prerequisites
- Python 3.10 or higher
- Git (optional, for cloning the repository)
Environment Setup
- Create a directory for the project and navigate to it:
mkdir yolo-mcp-service
cd yolo-mcp-service
- Download the project files or clone from repository:
# If you have the files, copy them to this directory
# If using git:
git clone .
- Create a virtual environment:
# On Windows
python -m venv .venv
# On macOS/Linux
python3 -m venv .venv
- Activate the virtual environment:
# On Windows
.venv\Scripts\activate
# On macOS/Linux
source .venv/bin/activate
- Run the setup script:
python setup.py
The setup script will:
- Check your Python version
- Create a virtual environment (if not already created)
- Install required dependencies
- Generate an MCP configuration file (mcp-config.json)
- Output configuration information for different MCP clients including Claude
- Note the output from the setup script, which will look similar to:
MCP configuration has been written to: /path/to/mcp-config.json
MCP configuration for Cursor:
/path/to/.venv/bin/python /path/to/server.py
MCP configuration for Windsurf/Claude Desktop:
"mcpServers": {
"yolo-service": {
"command": "/path/to/.venv/bin/python",
"args": [
"/path/to/server.py"
"env": {
"PYTHONPATH": "/path/to"
To use with Claude Desktop, merge this configuration into: /path/to/claude_desktop_config.json
Downloading YOLO Models
Before using the service, you need to download the YOLO models. The service looks for models in the following directories:
- The current directory where the service is running
- A
models
subdirectory
- Any other directory configured in the
CONFIG["model_dirs"]
variable in server.py
Create a models directory and download some common models:
# Create models directory
mkdir models
# Download YOLOv8n for basic object detection
curl -L -o models/yolov8n.pt
# Download YOLOv8n-seg for segmentation
curl -L -o models/yolov8n-seg.pt
# Download YOLOv8n-cls for classification
curl -L -o models/yolov8n-cls.pt
# Download YOLOv8n-pose for pose estimation
curl -L -o models/yolov8n-pose.pt
For Windows PowerShell users:
# Create models directory
mkdir models
# Download models using Invoke-WebRequest
Invoke-WebRequest -Uri " -OutFile "models/yolov8n.pt"
Invoke-WebRequest -Uri " -OutFile "models/yolov8n-seg.pt"
Invoke-WebRequest -Uri " -OutFile "models/yolov8n-cls.pt"
Invoke-WebRequest -Uri " -OutFile "models/yolov8n-pose.pt"
Configuring Claude
To use this service with Claude:
- For Claude web: Set up the service on your local machine and use the configuration provided by the setup script in your MCP client.
- For Claude Desktop:
- Run the setup script and note the configuration output
- Locate your Claude Desktop configuration file (the path is provided in the setup script output)
- Add or merge the configuration into your Claude Desktop configuration file
- Restart Claude Desktop
1. First Check Available Models
Always check which models are available on your system first:
I'd like to use the YOLO tools. Can you first check which models are available on my system?
<function_calls>
</function_calls>
2. Detecting Objects in an Image
For analyzing an image file on your computer:
Can you analyze this image file for objects?
<function_calls>
<invoke name="analyze_image_from_path">
<parameter name="image_path">/path/to/your/image.jpg</parameter>
<parameter name="confidence">0.3</parameter>
</invoke>
</function_calls>
You can also specify a different model:
Can you analyze this image using a different model?
<function_calls>
<invoke name="analyze_image_from_path">
<parameter name="image_path">/path/to/your/image.jpg</parameter>
<parameter name="model_name">yolov8n.pt</parameter>
<parameter name="confidence">0.4</parameter>
</invoke>
</function_calls>
3. Running Comprehensive Image Analysis
For more detailed analysis that combines object detection, classification, and more:
Can you perform a comprehensive analysis on this image?
<function_calls>
<invoke name="comprehensive_image_analysis">
<parameter name="image_path">/path/to/your/image.jpg</parameter>
<parameter name="confidence">0.3</parameter>
</invoke>
</function_calls>
4. Image Segmentation
For identifying object boundaries and creating segmentation masks:
Can you perform image segmentation on this photo?
<function_calls>
<invoke name="segment_objects">
<parameter name="image_data">/path/to/your/image.jpg</parameter>
<parameter name="is_path">true</parameter>
<parameter name="model_name">yolov8n-seg.pt</parameter>
</invoke>
</function_calls>
5. Image Classification
For classifying the entire image content:
What does this image show? Can you classify it?
<function_calls>
<invoke name="classify_image">
<parameter name="image_data">/path/to/your/image.jpg</parameter>
<parameter name="is_path">true</parameter>
<parameter name="model_name">yolov8n-cls.pt</parameter>
<parameter name="top_k">5</parameter>
</invoke>
</function_calls>
6. Using Your Computer's Camera
Start real-time object detection using your computer's camera:
Can you turn on my camera and detect objects in real-time?
<function_calls>
<invoke name="start_camera_detection">
<parameter name="model_name">yolov8n.pt</parameter>
<parameter name="confidence">0.3</parameter>
</invoke>
</function_calls>
Get the latest camera detections:
What are you seeing through my camera right now?
<function_calls>
</function_calls>
Stop the camera when finished:
Please turn off the camera.
<function_calls>
</function_calls>
7. Advanced Model Operations
Training a Custom Model
I want to train a custom object detection model on my dataset.
<function_calls>
<invoke name="train_model">
<parameter name="dataset_path">/path/to/your/dataset</parameter>
<parameter name="model_name">yolov8n.pt</parameter>
<parameter name="epochs">50</parameter>
</invoke>
</function_calls>
Validating a Model
Can you validate the performance of my model on a test dataset?
<function_calls>
<invoke name="validate_model">
<parameter name="model_path">/path/to/your/trained/model.pt</parameter>
<parameter name="data_path">/path/to/validation/dataset</parameter>
</invoke>
</function_calls>
Exporting a Model to Different Formats
I need to export my YOLO model to ONNX format.
<function_calls>
<invoke name="export_model">
<parameter name="model_path">/path/to/your/model.pt</parameter>
<parameter name="format">onnx</parameter>
</invoke>
</function_calls>
8. Testing Connection
Check if the YOLO service is running correctly:
Is the YOLO service running correctly?
<function_calls>
</function_calls>
Troubleshooting
Camera Issues
If the camera doesn't work, try different camera IDs:
<function_calls>
<invoke name="start_camera_detection">
<parameter name="camera_id">1</parameter> <!-- Try 0, 1, or 2 -->
</invoke>
</function_calls>
Model Not Found
If a model is not found, make sure you've downloaded it to one of the configured directories:
<function_calls>
</function_calls>
For better performance with limited resources, use the smaller models (e.g., yolov8n.pt instead of yolov8x.pt)